A Two-Stage Stochastic Optimization Model for Scheduling Electric Vehicle Charging Loads to Relieve Distribution-System Constraints

نویسندگان

  • Fei Wu
  • Ramteen Sioshansi
چکیده

Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival times and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. We demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. We also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scheduling of Electric Vehicle Charging Station for profit maximization of Vehicles and Station in Uncertainty

Abstract: In this paper, the electric vehicle (EV) charging station scheduling process is designed to maximize the profit of EVs owners and the station operator in two steps. First, a complete model is proposed to formulate the problem of charging and discharging EVs at charging stations in one-day-ahead 24-hours. The purpose of the program is to increase the profits of EVs owners charging stat...

متن کامل

Stochastic Multiperiod Decision Making Framework of an Electricity Retailer Considering Aggregated Optimal Charging and Discharging of Electric Vehicles

This paper proposes a novel decision making framework for an electricity retailer to procure its electric demand in a bilateral-pool market in presence of charging and discharging of electric vehicles (EVs). The operational framework is a two-stage programming model in which at the first stage, the retailer and EV aggregator do their medium-term planning. Determination of retailer's optimum sel...

متن کامل

A Novel Charging Plan for PEVs Aggregator Based on Combined Market and Network Driven Approach

With the large-scale production of plug-in electric vehicles (PEVs), a new entity, the PEV fleet aggregator manages charging and discharging processes of the vehicles. The main objective of an individual aggregator in interaction with electricity markets is maximizing its profit. In this paper, the performance of this aggregator in day-ahead and real-time electricity markets, considering (a) cu...

متن کامل

A Smart Charging Method for Optimum Electric Vehicles Integration in the Distribution System in Presence of Demand Response Program

Electric vehicle charging in the distribution network is one of the common techniques for technical and economic management of energy distribution, which, if implemented properly, will bring several benefits such as reducing network peak load, charging costs reduction, loss minimization, and etc. In most traditional charging methods, the constraints of fully charging electric vehicles at depart...

متن کامل

Improving the resilience of active distribution networks by optimal charging/discharging management of electric vehicles in parking lots

In the event of a severe incident with a high impact and low probability of occurrence, distribution networks may be separated from upstream networks and several feeders may be disconnected simultaneously within the distribution networks. In such circumstances, to maximize the resilience of the distribution networks and to prevent long-term global outages, they are reconfigured and islanded to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017